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An approximate equation is derived for the Sherwood number, which is a measure of 
the convective diffusion to a liquid droplet under conditions of constrained flow. 

The problems of convective diffusion to solid particles and liquid droplets (or gas 
bubbles) were studied in [i, 2] for the cases of high densities of these particles. The ap- 
proach used there was to reduce the convective-diffusion equation to an equation of the heat- 
conduction type with a variable thermal conductivity; this approach was originally worked out 
in [3] (see also [4]). The constrained flow of an incompressible liquid around a concentra- 
ted system of particles was studied in [5, 6]. 

It follows from [6] that the stream function near a spherical interface can be written 

= --(U~a~ § 3/4 U2g 2) sin2 O, (1) 

where  t h e  c o e f f i c i e n t s  U1 and U2 a r e  e q u a l  t o  t h e  v e l o c i t y  a t  t h e  e q u a t o r  (0 = 1 /2~)  and t o  
t h e  r e l a t i v e  f l o w  v e l o c i t y  f a r  f rom the  p a r t i c l e ,  r e s p e c t i v e l y ,  in  t h e  p a r t i c u l a r  c a s e  o f  an 
i s o l a t e d  p a r t i c l e .  

I n  t h e  c o n s t r a i n e d  f l o w  a r o u n d  a s o l i d  s p h e r e ,  a l i q u i d  d r o p l e t ,  o r  a gas  b u b b l e ,  i n  e a c h  
c a s e  w i t h  t h e  s u r f a c e  o f  t h e  p a r t i c l e  r e t a r d e d  by  s u r f a c t a n t s ,  t h e  f i r s t  t e r m  i n  ( ! )  d r o p s  
o u t ,  and t h e  c o e f f i c i e n t  U2 b e c o m e s ,  f o r  a m o n o d i s p e r s e  s y s t e m  o f  p a r t i c l e s  o f  r a d i u s  a 
[5, 61, 

) I U 2 = ~ ( 9 )  U, T ( p ) - -  - - 2 p  § §  § i. (2) 
1 

In the flow around droplets or bubbles of viscosity p', in the absence of surfactants, 
the second term in (i) is negligible in comparison with the first; in this case, according 
to [6], we can write 

U1 = 1/2~(p, z)U, ~(p, •  1 § ~ , •  ~' /~,  (3) 
1 § l / 3 ~ §  

where ~ =~(p,~) is the positive root of a cubic equation discussed in [2]. Crite~ial rela- 
tions between the Sherwood number and the Peclet number for a solid sphere (or a droplet with 
a retarded surface) and for a droplet or bubble with a free surface were also derived in'[2]. 
In the derivation of the relation for a droplet or bubble with a free surface it was actually 
assumed that the stream function near the surface of the droplet oFbubb!e can be approximated 
satisfactorily by the first term in (i). In flow around a droplet or bubble, however, the 
coefficients U~ and U2 are comparable in magnitude, so that the applicability of the criter- 
ial relations derived in [2] is restricted. 

To derive a result valid for droplets of any viscosity, we use a modification of the 
yon Karm~n--Pohlhausen method, by analogy with [7-10]. 
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If both the inequalities R = 2aU/~ < i and P = 2aU/D >> i are satisfied, the flow 
around the particle can be analyzed in the Stokes approximation, and the transport of diffus- 
ing material to the surface of the particle can be analyzed in the approximation of a thin 
diffusion boundary layer. 

The convective-diffusionequation is [i] 

Oc 1 Oc 0% 
Vr---2=----~V 0 - - = D - - ,  r = a q - ~  (4) 

o~ a (90 O~ ~ 

with the boundary conditions 

c=co@--+oo; r = a ,  0 = ~ ,  c = 0 ~ = a ,  0:#:~, 

where co is the concentration of the material in the incoming flow. 
consistent theory for the constrained flow around a cloud of particles [5, 6], 
V o can be written approximately as 

M = (3/2 g / u l  - -  I). 

(5) 

According to the Self- 
the velocity 

(6) 

The solution of the resulting boundary-value problem is preciselythe same as that of the 
problem for an isolated particle if.we replace the velocity Uo in [8] at the surface of the 
droplet at 0 = ~/2 by the velocity Ux from (3) and replace the coefficient M by M*. As a 
result, we find the following equation for the thickness of the diffusion boundary layer: 

, 1 ,  �9 /l 
P y (;+ ct o 

y , =  (7) 

lo u + 1--5 y (~- ~ T (; + 2) 

where y= d/a. Introducing the average boundary-layer thickness dm, and assuming small 
values of the ratio Ux/U, specifically, 

] I-U-- 3/5 - 2/15--6-"- ($@ 2) (< 1/5 6---~m ( ; +  1), 
a a 

(8)  

we find the following criterial relation from Eq. (7): 

S =  AP lla , A=1.035(1-F~) ' I~ ,  

where S = 2ak/D is the Sherwood number, and k = D ~ sin06 

0 

c o e f f i c i e n t .  For s u f f i c i e n t l y  l a rge  va l ue s  of U~/U, 

3/I0 U' ~m [ 2 1) ~_~1 (~ 2)]  - -~ )) 2 / 1 5  - -  3/ (~ + - -  + 
a _ . 

we find, analogously, 

(9) 

--dO is the integral mass-transfer 

(io) 

S = B pl/Z, B --= 0,632~ I/-~ (O, • (ii) 

Using the more exact calculation method of [3] (see also [i]), we find the coefficients 

A = 0.998 (I + ~)i/3, B -- 0.65~ I/2 (p, ~): (12) 

Using the same method as in [8], we can easily derive an interpolation dependence for 
the Sherwood and Peclet numbers which holds for intermediate cases: 

S 3 --  P~ (p, @ [0.424 S q-0.331 (1+3~r = O. (13) 
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Fig. la shows the Sherwood number as a function of the Peclet number according to (13) 
for various values of ~ and a fixed value of p; Fig. ib shows the Sherwood number as a func- 
tion of the concentration p for various values of the Peclet number and for a fixed value of 

Shown for comparison (dashed curves) is the function S = 0.65(0P) ~/2. The interpolation 
dependence found here can be compared with the experimental data by the procedure of [2] 
(see also the discussion in [2]). 

APPENDIX 

Hydrodynamic Problem. We consider the liquid flow in a monodisperse cloud of small 
spherical droplets. Since the Reynolds numbers are small in this case, we can use the linear- 
ized hydromechanics equations in the Stokes form. We assume that the droplets are statistical- 
ly independent and that there are no correlations among the spatial positions of the droplets. 
We assume the continuous suspension phase to be incompressible. We neglect the random fluc-- 
tuations due to concentration fluctuations. Under these conditions we can use the "point- 
force" approximation proposed by Tam [5] for the solution of the problem of the steady-state 
flow in an array of solid particles; according to this approximation, the perturbations 
caused in the flow by the particles are replaced by the perturbations caused by point forces 
applied to the liquid at the centers of the particles. 

In this situation the system of equations of motion is 

A~" -- ~ V --- 1/~Wp I outside the droplet, 
vV= o J 

v V ' =  I/F'VP' t within the droplet, 
vV '  - -  0 J 

(1.A) 

and the boundary conditions are 

(the nomaal cpmponent of the velocity 
vector vanishes) 

v.-v;=o 

at r = a i Ve ~ V'o vectors(the tangentialvanish) componelats of the veloci ty  (2 .A) 

/ 
(the tangential stresses are equal), 

Here o is the stress tensor; V + U in the limit r * ~; V' p' , are bounded in the limit r + 0; 
is a coefficient incorporating the constraint on the flow (it depends on the particle con- 

centration and the ratio of the viscosities of the continuous and disperse phases); and p 
and p' are the pressures in the continuous and disperse phases, respectively. Employing the 
method used previously in [ii] to solve the problem of the laminar flow of a viscous liquid 
around a sphere, we find the solution of System (I.A), (2.A) for the velocities: for the con- 
tinuous phase, 

= [1 - -  E exp ( - -  x) (x 2 + x -i- l) x -3 + Gx -3] 0 

+ [E exp (-- x) (x 2 + 3x + 3) x -~ --3Gx -a] (U n ) n, 

E = - - I  ~Aexp~, G = - - I  ~ [ ~  ?_(~  1)AI, x = ~ r , '  ( 3 .A)  
2 2 

A --  2 + 3 •  , ~ : g a ,  r ' ~ r / a ;  
1 ~ ~13 + • 

for the disperse phase 

2 ) 1 E,x. 
g '  = E'x"- + 7 -  a '  U - -  - -  - (g7 ~),T, 

2 " " 

i 1 (4. A~ 

~2 1 -~- ~/3 • 

1 0 3 1  
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Fig. i. Sherwood number S in Eq. (13). a) As a function of 
P for various values of ~ (the curve labels) and a fixed 
value of 0 (P = 0.4); b) as a function of ~ for various 
values of P (the curve labels) and a fixed value of ~(~= i). 
Solid curve) Eq. (13); dashed) S = 0.65( p) X/2. 

In the limit ~ § ~, we find from (3.A) the solution for an ensemble of hard spheres [5]. Ex- 
panding the projection of the velocity on the e direction in a series in powers of ~(r = a + 
~), and retaining only the first term in the series for small ~, we find, approximately, 

V~ l-!-(l§ a ~ ]U~sinO. 

The stream function ~ is calculated in the standard manner. 

(5.A) 

NOTATION 

a, radius of particle; c, concentration of the material; R = 2aU/~, Reynolds number; 
S = 2ak/D, Sherwood number; P = 2aU/D, Peclet number; U, filtration velocity; V~, tangential 
velocity of liquid; 0, angular variable; (p, ~) function defined in. (3); ~ = p /~; p, vis- 
cosity of continuous medium; p', viscosity of particle material; ~, radial distance from the 
surface of the particle; ~, kinematic viscosity of surrounding medium; D, diffusion coeffi- 
cient; y = 8/a; 6, thickness of diffusion boundary layer; 8m, average thickness of diffusion 
boundary layer; M and M*, coefficients in Eq. (6); A, coefficient in (9); B, coefficient in 
(ii); k, integral mass-transfer coefficient; Uz and U2, coefficients in Eq. (i); p, concen- 
tration of particles; ~ = ~(p, ~) function defined in (3); ~, stream function; ~ , function 
defined in (2); Uo, value of V e at the surface of the particle at 0 = ~/2. 

LITERATURE CITED 

i. Yu. A. Buevich, Inzh.-Fiz. Zh., 23, 709 (1972). 
2. Yu. A. Buevich and Yu. A. Korneev, Inzh.-Fiz. Zh., 25, 594 (1973). 
3. V. G. Levieh, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jer- 

sey (1962). 
4. S. K. Friedlander, AIChE J., 7, 347 (1961). 
5. C. K. W. Tam, J. Fluid Mech., 38, 537 (1969). 
6. Yu. A. Buevich and V. G. Markov, Prikl. Mat. Mekh., 36, 480 (1972). 
7. G. A. Aksel'rud, Inzh.-Fiz. Zh., 27, i (1953). 
8. E. Rukenstein, Chem. Eng. Sci., 19, 131 (1964). 
9. I. Yaron and B. Gal-Or, Int. J. Heat Mass Transfer, 14, 727 (1971). 

i0. R. Pfeffer, Ind. Eng. Chem. Func., 3, 380 (1964). 
ii. L. D. Landau and E. M. Lifshits (Lif--shitz), Fluid Mechanics, Addison-Wesley, Reading, 

Massachusetts (1959). 

1032 


